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ABSTRACT

Commuting matrices are key for a variety of fields, includirans-
portation engineering and urban planning. Up to now, thestim
ces have been typically generated from data obtained frovest
Nevertheless, such approaches typically involve highscadtich
limits the frequency of the studies. Cell phones can be densd
one of the main sensors of human behavior due to its ubicaty,
as a such, a pervasive source of mobility information at gelar
scale. In this paper we propose a new technique for the estima
tion of commuting matrices using the data collected frompée
vasive infrastructure of a cell phone network. Our goal ishiow
that we can construct cell-phone generated matrices thatregthe
same patterns as traditional commuting matrices. In oaldbtso
we use optimization techniques in combination with a varabf
Temporal Association Rules. Our validation results shaat this
possible to construct commuting matrices from call detdlords
with a high degree of accuracy, and as a result our techngjae i
cost-effective solution to complement traditional apoftes.

Categories and Subject Descriptors
H.4 [Information Systems Applicationg: Miscellaneous

General Terms
Algorithms, Experimentation,Measurement.

Keywords

Commuting Patterns, O-D Matrix, Call Detail Records, Tenapo
Association Rules.

1. INTRODUCTION

Commuting patterns are typically represented using conmgut
matrices, which are a particular case of O-D matrices. O-DB ma
trices characterize the transitions of a population betveterent
geographical regions representing the origi®) @nd destination
(D) of a route. When building commuting matrices the geographi
cal areas representing origin( and destinationp) capture where
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people live and work. Typically O and D are the same set and rep
resent the towns or neighborhoods of the geographical aréeru
study. Each element of the commuting maittixj) defines the
percentage of individuals that live ; and work inD;. O-D ma-
trices are traditionally used in transportation and urbkamming
engineering, and have been approximated using a wide range o
different techniques [11][3].

Typically, National Statistical Institutes carry out petical sur-
veys asking different segments of the population about twhn-
muting patterns [18]. The information obtained is used gaitin
for O-D generation techniques. However, such approactcajigi
involves high costs and the data collected has spatio-teahlm-
itations, which implies that the matrices generated tyijyicanly
represents a snapshot of the commuting patterns over time.

In recent years, cell phones have become a pervasive technol
ogy with users carrying them at almost all times. The ubiqaft
these platforms has transformed cell phones into one of gia m
sensors of human behavior. In fact, every time a subscrilagem
or receives a phone call, or an SMS, or an MMS, information re-
garding the interaction as well as the geolocation of the (ise
the form of the tower used for the communication) is logged fo
billing purposes. As a result we can find in the literature idep
of studies focussing on using cell phone data for estimatafjc
and commuting patterns [9][20] . Following this trend, iistpa-
per we explore the use of the location information containeiall
Detail Records as a means to compute the commuting patteans o
population expressed as an O-D matrix. Such approach aneco
the limitations posed by the use of other proxies (like sroartls,
surveys or social security records) and it can be carried®often
as necessary with very limited costs.

Compared to the literature, our approach has the followorg ¢
tributions: (1) We base our study in Call Detail Records,chtare
already available for billing purposes in a telco operadad not in
specific measurements and/or traces obtained from the loatlep
network. As a result our approach is based on a big part of a pop
ulation and not on a limited number of traced cell phones\{(2)
present a new technique for defining and constructing O-Dicest
based on a new temporal variation of association rules (T&R)-
poral Association Rules); (3) Our technique does not regaity
number of minimum interactions (phone calls) per user beeéu
is not based on individual users but on aggregated patt@nur
technique is designed to capture the different culturalrooting
schedules of different urban areas; and (5) we present odiest
for both the home-work and work-home commuting patterns.

2. CELLULAR INFRASTRUCTURE

In order to compute the commuting patterns of a populatiomfr
geolocated cell phone logs, we first give a brief overviewsbow



these pervasive networks work. Cell phone networks aréumsiitg
a set of base transceiver stations (BTS) that are in chargerof
municating cell phone devices with the network. Each BT Setow
has a geographical location typically expressed by ittuid¢ and
longitude. The area covered by a BTS tower is called a celthEa
cell is typically divided in three sectors, each one cowgda0 de-

grees. At any given moment, one or more BTSs can give coverage

to a cell phone. Whenever an individual makes a phone cal, th

identifies which behavioral patterns better define comngutihen
using CDR data.

4. ESTIMATING COMMUTING MATRICES
FROM CDR

In this section we will present the mechanisms needed to char
acterize the commuting patterns of a population from catéaitie

call is routed through a BTS in the area of coverage. The BTS is records (CDR).

assigned depending on the network traffic and on the geoigraph
position of the individual.

CDR (Call Detail Record) databases are generated when a mo-

bile phone connected to the network makes or receives a ptatine
or uses a service (e.g., SMS, MMS, etc.). In the process, @nd f
invoice purposes, the information regarding the time aredBmS
tower where the user was located when the call was initiaged i
logged, which gives an indication of the geographical pasipf

a user at a given moment in time. Note that no information abou
the exact position of a user in a cell is known. Also, no infation
about the location of cell phone is known or stored if no iatg&ion

is taking place.

From all the data contained in a CDR, our study uses the en-

crypted originating number, the encrypted destination bemmthe
time and date of the call, the duration of the call, and the lat
tude and longitude of the BTS tower used by the originatiny ce

4.1 From CDRs to Commuting Matrix

To compute a commuting matrix from CDRs we first need to
identify the geographical areas in the region under study e
are going to use as eithéome or work. Given that the goal of
this paper is to present an alternative method to generatenceo-
ing matrices, for each particular case we will select asoregthe
same ones considered by corresponding NSI. We assign ta@ach
gion the set of BTSs geographically included in them (i.e.ttw-
ers that give coverage to that area). As a result each gdugahp
area considereg,;,i = 1,..., N, with N the total number of geo-
graphical areas considered, can be characterized by a BatSsf
gi = {bt81, btsa, ..., thk}.

Once these areas have been characterized, we need to compute
—from the CDRs~— the individuals that called from an origiaaaat
some point in time and later show calling activity at a destion

phone number and the destination phone number when the inter area. These associations will populate the home-work ané-wo

action happened. In order to preserve privacy, all the médion
presented is aggregated and original records are encryjgtecbn-
tract or demographic data was considered or available i®sthdy.

3. PROBLEM DEFINITION

A commuting matrixCM|[O, D] represents the percentage of
population that commutes on an average daily basis fromigimor
geographical are® to a destination geographical aréa Typ-

ically O and D represent the same set of towns, and as a result

a commuting matrix is usually a square matrix. Two commut-
ing matrices can be defined: the home-work commuting matrix
CM|[H, W] and the work-home commuting matri& M [W, H].

In the first case, each row of the commuting home-work matrix
CM|[H, W], H; represents the percentage of population that lives
in geographical are&/;, and commutes to each geographical area

home commuting matrices.

We can formalize this problem using Association Rules [1§- A
sociation Rules (ARs) were introduced by Agrawidl. as a tech-
nique to discover specific item relationships in itemsels$pecif-
ically, given an itemseK = X, X5, ..., X,,, an Association Rule
of the typeX — Y implies that whenevek is satisfiedY” is also
satisfied, with a given support and confidence. Formallyndpé&t
the probability of an itemset:

support(X —Y) = P(X UY) 1)
. _ _ P(XUY)
confidence(X —Y)=P(Y|X) = ) )

Often times, Association Rules(AR) are used to find the wiple
that satisfy minimum support and confidence values in a datas
ARs are calculated using thgriori algorithm presented in [1]. In

Wj. The diagonal of the matrix expresses the percentage of the o context, we seek association rulés — W; andW; — H;

population that lives and works in the same town. Symmeélyica
the work-home commuting matri&€’ M [W, H] accounts for the
population that works in the geographical ai®a and commutes
back home to each one of the geographical locatidnécolumns).
From this explanation, beingy the number of geographical areas
considered, itfollows that’~ " CM[H;, W;] = 1vi € [1, ..., N]
andY>’=Y CM[W;, Hj) = 1Vi € [1, ..., N].

Tracfitionally, such commuting matrices are computed by Na-
tional Statistical Institutes (NSIs) that run surveys angsjion-
naires across the population under study and determineotie ¢
mutes that citizens carry out on a daily basis. These mgpluiié-
trices are typically available at census bureaus. Howesgestated
earlier, such surveys are expensive and thus carried ont ege
tain number of years.

The goal of this paper is to present a mechanism to estimate th
commuting matrix of a geographical area from the infornration-
tained in CDR records that can approximate the values peoviy
traditional questionnaire-based approaches. For thgioget two

that identify tuples characterizing the home to work andkntor
home commutes. Furthermore, we require these events t@happ
in a temporal order.e., the home-work matridxC M [H, W] is pop-
ulated with pairs of event&; — W; such that the interaction at a
home locationH; always happens earlier in time than an interac-
tion event at work locatiofV’;; analogously, the work-home matrix
CM[W, H] is populated with pairsV; — H; where an interaction
event at work locatioV; always happens before an interaction at
a home locatiorH{ ;. Because traditional Association Rules do not
consider any temporal order, we present a technique designe
capture these elemenfBemporal Association Rules (TARS).

4.1.1 Temporal Association Rules

Temporal Association Rules extend association rules bp-int
ducing temporal constraints in the relationship betweg¢ecauent
and consequent [14][7]. For our context, we propose a new Tem
poral Association Rule (TARs) where item&andY” are required
to happen within a specific time interval. Specifically, eashoci-

mechanisms need to be defined: (1) the construction of commut ation ruleX — Y is characterized not only by its support and con-

ing matrices from CDR data and (2) an optimization proceas th

fidence, but also by time intervals at which itefdsandY” need to



AlgOl‘ithIIl 1: C’ﬂ[(‘DR = ('ﬂ[T:’lR(CDR. (tO.smrL tO.en.d)« (fp_gmmi fD.end))

CM[O.D]
for each Subscriber S do
for i =1,...,|CDR| do

if time(CDR;) €
O = location(CDR;)

[to,start: tO,end] then

for j =14,...,|CDR within 24h| do

if time(CDR;) €
D = location(CDRy)
CM(O,D) + +
end if
end for
end if
end for
end for
for each pair (O;, D;) do
CM[0;,D,] =

end for

[tD start,tD end] then

CM(0,,D;)/ Y=Y CM(O;, D;)

Figure 1: CMTAR algorithm for the construction of an O-D matrix using @mporal Association Rules (TAR).

happeni.e, X[To] — Y[Tp], whereTy is the time interval when
the antecedent (or origi®) has to happen arfip the time inter-
val when consequent (or destinatif)) has to happen. Also while
in traditional Association Rules, antecedents and coresggLcan
have more than one element, in our appro&chandY” contain just
one element, i.e. one geographical area, indicating thgir€?)
and the Destinatiorid).

In order to reveal commuting patterns from CDRs, we seek to
identify the temporal association rules whose confidengeesents
the percentage of individuals that are at an origin locafipduring
atime intervallo = [to,start, to,ena) @nd move to a destination
location D; where they are present during a time inter¥al =
[tD,start, LD enal, formally:

®)

Note thatto .q happens beforep siqre. IN our framework O;

O; [tO,start7 tO,end] - Dj [tD,start7 tD,end]

and D; represent geographical regions and the temporal associa-

tion rules will either reveal commuting patterns from homevbrk
locations (withO=home location and=work location) or work to
home commutes (witth=work andD=home).

In order to construct a commuting matrix CM, we propose CM-
TAR, a TAR-based algorithm (see CMTAR Algorithm in Figure 1)
that receives as input a set of CDRs and a pair of time intefial
andTp. The algorithm produces as output a Commuting Matrix
obtained from CDR record€XM¢cp r) for the corresponding time
intervals. CMTAR identifies for each subscribfgmwithin the CDR
dataset, all the pair®; — D; such thatO; happens within the
interval [to,start, to,ena) @nd D; happens no later than 24 hours
within the intervallt p, start, t D ena]. Each element of the commut-
ing matrixC' Mcpr[O, D] is populated with the confidence values
associated to each Temporal Association Rule (TBR)— Dj,
with i, 5 =1, ..., N (see Equation (2)).

From an implementation perspective, we have implemented CM
TAR using a modifiedApriori algorithm designed to capture the
temporal characteristics of TAR. The algorithm assumes tte
set of CDRs are grouped for each subscrisery date and time,
being|C' D R| the number of CDR entries.

4.2 Optimizing Time Intervals

The previous section presents an algorithm, CMTAR, that con
structs a Commuting Matrig' Mc p r using CDR and a set of time

intervals that define the Temporal Association Rules. Thubd{pr
lem is how to identify which temporal ranges best capturebine
havioral fingerprint for the home-work commuting matrix ahe
work-home commuting matrix. The objective is to identife time
intervals for the origin and destination of the Temporal dsa-
tion Rules o andTp) that produce a Commuting Matrix from
CDR (CMepr) as similar as possible to the original Commuting
Matrix provided by the corresponding National Statistiestitute
(CMnsi).

A first approach could use brute force to test all possible fim
tervals, and compute the similarity betwe@n/ cpr andC Mys1,
being the best solution the one with the highest similarajue.
However, due to the large amount of CDR data such approach is
not computationally feasible. We propose to use optimizetich-
niques to identify the optimal time intervals that best elcagrize
the commuting patterns. In the following sections, we wi#gent
the use of Genetic Algorithms (GA) and Simulated Anneals#g)(
to implement the optimization process. Both technique® Heeen
shown to be useful in similar problems [10], and althougly the
both stochastic, they explore the candidate populatioimgyusg-
nificantly different approaches.

In our context, for each pair of time intervaly andTp that the
optimization technique evaluates, we first need to compute-p r
using the CMTAR algorithm. In order to evaluate its accuraoy
measure the similarity betweetiM ysr and CMcpr. AS ex-
plained, each row il Mcp i represents the set of confidence val-
ues for the corresponding TARs for all commutes departiogfr
each geographical ar& to any destination locatior(; — D..).
Similarly, each row irC' My s represents the confidence of the as-
sociated TAR from each geographical a¢&ao geographical areas
D... Thus, in order to evaluate the accuracy(&¥/cpr we need
to evaluate the similarity of each row with the correspogdiow
of CMnsy. For that purpose, we use Pearson’s correlation[16] to
analyze the similarity between each origin locationin CMcpr
with CMysr and the final similarity value is given by the aver-
age Pearson correlation across all origins. Formally thmlagiity
betweenC' My sr andC Mcpr is obtained as:

¢(0;) = Pearson(CMcpr[O;, D+], C’MNSI[Oi7 D] (4)

similarity = Z le(O

=1

)I/N-(9)



4.2.1 Optimizing Time Intervals with GA

Genetic Algorithms (GA) are search algorithms based on e m
chanics of natural selection tailored for vast and compksarch
spaces [2]. A GA starts with a population of abstract represe
tations (called chromosomes) of candidate solutions \(iddals)
that evolves towards an improved sets of solutionsh®mosome
is composed of several genes that code the value of a speanific v
able of the solution. Each gene is typically represented sisray
of Os and 1s. During the evolution, individuals from one gatien
are used to form a new generation, which is (hopefully) aclose
the optimal solution. GAs use a fitness function in order @ev
ate the quality of the solution represented by a specificviddal.

In each generation, GA creates a new set of individuals oédhi
from recombining the fittest solutions of the previous gatien
(crossover), occasionally adding random new data (mutatio
prevent the population from stagnating. This generatievalu-
tion is repeated until some condition (for example numbeuay-
ulations or improvement of the best solution) is satisfied.

In the context of identifying the best time intervals for stmict-
ing CMcpr, GAtakes as input the set of phone calls (CDRs) from
a geographical region andM sy, that defines the optimization
objective. Each candidate solution produced by GA is design
to capture the time intervals at which commuters call froigior
and destination locations. In order to do that, we define a-chr

Figure 2: Geographical division of the municipalities in which
the region of Madrid is divided (including the names of somé o

mosome composed of four different genes. The first two genes them). The association between BTS towers and geographical

represent the starting time and the finishing time at whidb su
scribers make phone calls from the origin locati@ns The last
two genes represent the starting time and the finishing timvbigh
subscribers make phone calls from destination locationgEach
gene is composed of five bits, which accounts for 2dehours
of the day. Given that we require thBb start, to,end] happens
before[tp,start, tD,ena), Whenever the newly computed chromo-
somes does not satisfy this restriction, we assumelihdtappens
the natural day beforép.

The fitness of each candidate solution is evaluated using-Equ
tion (5), i.e. we define the fitness function as the accuraahef
mobility matrix C'Mcp r with respect to the NSI mobility matrix,
CMnsr. As a first step to evaluate the fitness of a candidate solu-
tion, CMcpr has to be generated using CMTAR algorithm with
the time slots defined by the genes of the candidate solution.

For example, if a candidate solution proposed by the GA has th
values [(06,09),(17,22)], CMTAR computes the temporabeiss
tion rulesO; — Dj that represent calls made or received at loca-
tion O; during a morning interval (6am to 9am) and at location
during a night period (5pm to 10pm). The confidence values are
then used to generat€ Mcpr, whose fithess is evaluated using
C My sy with Equation (5).

4.2.2 Optimizing Time Intervals with SA

Simulated Annealing (SA) is a probabilistic method desijtee
find the global minimum of a cost function that may posses sev-
eral local minima[12]. It works by emulating the physicabpess
whereby a solid is slowly cooled so that its structure iséroat a
minimum energy configuration [4].

The SA metaheuristic starts from a random initial configorat
and seeks to find solutions that minimize an energy funckion)
as the temperaturE decreases. At each step, the solution explored
is accepted as long as the Acceptance Probability Functigifr)
that depends both on the energy and on a varying temperedsre h
a higher value than a randomly selected number:

P(E(s), E(new),T) > random(0, 1) (6)

areas is defined by this borders.

The APF is selected such that the smaller the valuel'athe
less "uphill" solutions are allowed to be explored, and/ade-
creases, the more the "downhill" solutions are favored. hSarc
approach guarantees that the process does not get stucg&ain lo
minima reaching a good approximation to a global minimumisTh
process is repeated multiple times at each temperature t@ail-
low the system to stabilize before decreasinhggain.

In our context, SA takes as input CDRs afid/y sy, and out-
putsC Mcpr and the intervaldo = [to,start, t0,ena) @NdTp =
[tD,start, tD,ena) that best characterize commuting patterns. For
that purpose, SA explores randomly selected time intesedging
the ones that decrease the candidate’s eng&i@y) until a global
minimum is found. Each candidate solution explored by SAeis d
fined as a set of two intervals, one representing the timeviaite
at origin [to,start, to,ena] @nd another representing time interval
at destination{tp,start, tD,ena). Each time in the intervals is rep-
resented as a number @, 24], checking thatl’o happens before
Tp. If this condition is not satisfied, the process assumesfbat
happens the natural day befdfe .

Whenever SA explores a new candidate solution, it randomly
selects for each timeof each slot a new value from its neighbor-
hood. Given that SA seeks to minimize the energy function, we
define it as one minus the correlation coefficient betw@€éticp r
andC My s obtained by Equation (5). Finally, the temperatiite
is decreased following a geometric decrement suchThat =
ok Told-

5. EXPERIMENTAL EVALUATION

In this section we present an evaluation of the mechanism we
have proposed to generate the commuting matrix for the megfio
Madrid using CDR data. The state has a population of 6.5M and a
size of 8,000k m?, with the city of Madrid concentrating 3.3M in
population, and the rest corresponding to the 48 munidipalin
which the region is divided. Figure 2 presents the map ofeégen
and the division in municipalities.



5.1 Datasets

We have used two sources of information from the y2@19:

(1) the NSI mobility matrices for the state of Madrid and (2R
dataset of cell phone calls made and received in the state.

NSI matrices represent the home-to-wofkM/ n s [H, W) and
work-to-home C'Mys;[W, H]) commuting patterns during009
for the 48 municipalities shown in Figure 2. These munidipal
ties are considered as the Origihand DestinationD sets. Such
matrices were built by the local NSI after gathering infotimare-
garding the municipality where a person lived and the mpaidy
where a person worked.

The second source of information is a CDR dataset that emtai
all phone calls, SMS and MMS, that were collected from BTS-tow
ers located in the state of Madrid during October and Noverabe
2009, which account roughly for 3.5M unique phones and atoun
300M interactions. This dataset also includes the gedlmtatf
the BTS towers. In order to filter out mobility patters notated
to commuting, we only consider CDR data from Monday through
Thursday. Similarly, all bank holidays were filtered. Frdme two
months of traffic available for this study, we will use thealtbm
October for the optimization process, and the data from RNdner
will be used to validate the results.

In order to guarantee privacy we implemented a set of elesnent
(1) Allrecords were anonymized; (2) Data collection andrg/moiza-
tion was done by a third party that was not involved in the ysigj
(3) No individual demographic data was available or receafbr
this study and (4) The information presented is always agdes
in order to further guarantee privacy.

5.2 GA and SA: Configuration

Genetic Algorithms and Simulated Annealing are used tockear
for the temporal intervals that best represent the timeshathw
people commute using CDRs for the Madrid region. We carry out
atotal of four experiments: (1) the constructiol¥/cpr[H, W]
using Genetic Algorithms and (2) using Simulated Annealantd
(3) the construction o Mcpr[W, H| using Genetic Algorithms
and (4) using Simulated Annealing. The optimization precdss
the same in all cases, but while the first two G&&/ns;[H, W] as
the goal of the optimization, the second two a$&/ns:[W, H].

For the experimental evaluation, we have used the JGAP imple
mentation of Genetic Algorithms [15] and our own impleméiota
of Simulated Annealing following the description presehite [4].
Both approaches use the CMTAR Algorithm to constité?cp r
for each set of time slots considered, which we have impleéaten
in Java.

In our experiments, GA uses a distributed architecture aiaer
set of16 genetic algorithms are run in parallel to explore the qualit
of different time intervals. Specifically, each processisialized
with a randomly generated population of a set of individuais$
every generation, the reproduction is carried out f@0% of the
total population; the crossover is executed witB5& of pairs of
the selected population by randomly selecting a gene in ie@th
vidual and exchanging its content with its partner; and toéation
is executed for each gene with a probability of 1/12 and by ran
domly creating a new gene. The fittest individual is alwayveao
to the next generation, and all the other individuals havechg
bility of being brought to the next generation proportiotatheir

Size | Temporal Range | Correlation
10 20, 21][9, 16 0.8050
20 20, 21][9, 10 0.8219
50 [20, 21][9, 10] 0.8219

Table 1: Optimization results when using Genetic Algorithis
for the home-to-work [H,W] commuting matrix.

Size | Temporal Range | Correlation
10 | [14, 16][20, 24] 0.9029
20 | [15, 16][20, 24] 0.9029
50 | [15, 16][20, 23] 0.9059

Table 2: Optimization results when using Genetic Algorithns
for the work-to-home [W,H] commuting matrix.

Thew = 0.65 % T4 until a threshold value df;, = 0.1 is reached.
This cooling criteria allows us to explore a sufficientlygammount

of temporal intervals without making the process too longedch
temperature, the SA evaluates three different time interaad
keeps the one that yields the best commuting matrix when com-
pared toC' My ;. Finally, we define as neighborhood solutions the
set of temporal intervals that are within a range of four Bdue-
fore and after the last time explored., tnew € [tora —4, tora +4].

All the parameters here described were selected becausectie
resented the best performing values across a large eaiusst.

5.3 Optimization Results

In this section, we discuss the results after running GA aid S
for constructing H, W] and[W, H] mobility matrices.

Table 1 and Table 2 show the results after applying GAs for the
home to work and work to home commuting matrices, respdgtive
The tables shows the optimum Temporal Range obtained fdr eac
population size considered and the value of the fitness ifumct
(given by Pearson correlation). The Temporal Range is sspte
by two intervals, the first one indicates the temporal caodifor
the origin location and the second one for the destinatioation.

In Table 1 we observe that using CDRs to compute home-to-
work commuting matrices for the region of Madrid we achieve c
relation rates of up t®.82 when compared to the NSI matrices
(ground truth). This result was obtained with an initial population
of 20 candidate solutions and for time slots that define origin as
the interactions that took place between 8pm to 9pm of theipre
ous day, and destination as the interactions that took jpleveeen
9am to 10am. Smaller populations yielded worse correlatén
sults whereas larger populations did not improve the resuin
the other hand, Table 2 shows that the work-to-home mobrigy
trices computed by GA achieve correlation rates when coatpar
NSI matrices of up t@.9059 with an initial population of20 in-
dividuals. In this scenario, the algorithm uses the callserfaom
3pm to 4pm to detect the origin location and calls made from 8p
to 11pm (of the same day) to identify the destination logatio

Tables 3 and 4 present the results obtained when using SA. For
the [H, W] commuting matrices, the best coefficient obtained was

fithess value. Each process is executed on one core and runs irof 0.7863 with origin location detected between 9pm and 10pm

parallel with the other processes in our architecture of-doee
Intel processors. For our experiments we considered tliffeesht
population sizeg0, 20, 50.

On the other hand, the SA implementation starts with anainiti
temperature off; = 5 and decreases its value with the function

of the previous day and destination location determineahfcalls
made from 11am to 4pm. In the case of the work-to-home commut-
ing matrices, the highest correlation coefficient i &949 with a
temporal range of 10am to 4pm to detect the origin locaticth an
8pm to 11pm to detect the destination location.



Temporal Range | Correlation
21, 22][11, 16 0.7863
21, 22][12, 16 0.7844
[21, 23][10, 16] 0.7840
[21, 23][14, 18] 0.7808

Table 3: Optimization results when using Simulated Annealig
for the home-to-work [H,W] commuting matrix.

[ Temporal Range | Correlation |

10, 16][20, 23 0.8949
14, 1720, 21 0.8787
[15, 16][20, 23] 0.8781
[10, 17][21, 22] 0.8724

Table 4: Optimization results when using Simulated Annealig
for the work-to-work [W,H] commuting matrix.

In general the correlation values provided by GA are beltan t
the ones provided by SA. Also, we observe that in both cakes, t
work-to-home commuting matrices are better modelled fradR€
than the home-to-work0(90 to 0.82 when using GA, and.87 to
0.78 when using SA). This result might be related to the fact that
people make more cell phone calls during the day than eathein
morning or at night, which provides a larger numbegedgraphi-
cal pointsto model commutes from work-to-home than vice versa.
Also, it might be an indication that the home-to-work comimgt
follows a less direct routee(g., taking kids to school), thus adding
noise to the available data.

Finally, the average execution time for GA when considetimgy
best solutions obtained for a population 28f is 2,890 minutes,
while the average processing time for SA for the best satuigo
2,699 minutes.

6. VALIDATION

The experimental results described in the previous sebttive
shown that CDRs can be used to construct commuting mattiees t
are as good as the one provided by NSI.

In our context, the goal of the validation is to assess wihdtie
time intervals identified for thed, W] and[W, H] commuting ma-
trices are valid to estimate the commuting matrices of oylears,

Figure 3: Visualization of the Commuting Matrix obtained for
the municipality of Pinto in southern Madrid, showing the
five municipalities with the highest confidence value for tirk-
to-home commuting.

ing the November 2009 CDR dataset (with its correspondiag-st
dard deviation). We observe that the Validation correfatioef-
ficients are within a 10% of the correlation values obtainethe
Optimization process. It is noticeable that in the case efutbrk-
to-home commuting there is a slight increment in the coti@ia
which, in line with the results discussed in the previougisac
being probably caused by an increase of the CDR data awailabl
during the time slots considered.

These results show that, although with some differencespph
timization process provides a good approximation of theetim
tervals needed to compute commuting matrices, and as & resul
future commuting matrices can be directly estimated fromRCD
data. This allows for constructing O-D matrices with muchreno
frequency at a fraction of the cost. The reason for the diffeval-
ues between the NSI- and the CDR-generated matrices isymainl
caused by the fact that the NSI generates the commutingxmatri
strictly using individuals that have a declared work logati As
a result,CMys; does not capture any non-work related mobil-

in order to show that CDRs can be used to generate commuting ma ity (which in itself is very difficult to capture using questinaire-

trices without the need of NSI data. Ideally, the validatpwacess
would consider the commuting matrices obtained by the N8I fo
2010 and CDR data from 2010, and validate the time intervals u
ing the similarity betweed'Mcpr andC My s7. Nevertheless, so
far, no commuting matrices for 2010 or 2011 have been puidish
by the local NSI.

Considering that limitation, we implement a validation qees
that uses the 2008' M s;[H, W] and C My s [W, H] matrices

based approaches). Our CDR approach captures all types-of mo
bility (work, leisure, shopping, students, etc.), so ttet fhat using
CDR data we can not completely correlate the results witiNBke

is because our matrix contemplates more situations andcasisu
more realistic.

6.1 Commuting Patterns by Municipality
The correlation coefficient betwe&VMcpr andC My sy rep-

and the November 2009 CDR dataset. The intervals we are goingresents an average value between each individual romwcsoo-

to use are the ones obtained by the GA-based optimizaftton:-
21]{09 — 10] for the home-to-work commute anfth — 16][20 — 23]
for the work-to-home commute. Finally, the validation imddy
calculating the similarity between the CDR matrix obtaiaed the
NSI matrix using Equation (5).

Table 5 shows for both home-to-work and work-to-home com-
mutes the Temporal Range used, the correlation valuesnebtai
during the Optimization process using the October 2009 CatRset,
and the Validation correlation betwe€\/cpr andC'Mys; us-

relation. In an attempt to understand the commuting pattenmin-
dividual municipalities, we compare the rows of each CDReoa
mobility matrix with the rows of its NSI counterpart. Our ebj
tive is to do a preliminary study to understand whether tteeee
stronger correlations between both matrices for specificicipal-
ities or on the contrary the correlations are the same aatbsau-
nicipalities. Figure 3 presents a visualization of the wrdhome
commuting matrixC' Mcpr for the municipality of Pinto using
November 2009 CDR data. It shows the top five TARs with the



Temporal Range | Optimization(Oct09) | Validation(Nov09)
Home-To-Work [20, 21][9, 10] 0.8219 0.765 ¢ = 0.46)
Work-To-Home [15, 16][20, 23] 0.9059 0.9322 ¢ = 0.16)

Table 5: Validation results for the [H, W] and [W, H] commuting matrices obtained with November 2009 CDR data.

Municipality % of Population | H-W Correlation | W-H Correlation
Madrid 50% 0.9995 0.5818
Alcobendas 2% 0.9885 0.8210
San Fernando 1% 0.9120 0.7411
Moraleja de Enmedid 0.0007% 0.0935 0.9895
Villa Conejos 0.0004% 0.1256 0.9972

Table 6:

highest suppori,e., the top municipalities where people that work
in Pinto live.

Table 5 shows that the standard deviations for home-to-andk
work-to-home correlations afe46 and0.16, respectively. These
results reveal that there exist large differences in theetation
values across municipalities, especially for the homexok com-
muting patterns. Table 6 presents the individual corretatoef-
ficients for a set of representative municipalities for tioenle-to-
work and work-to-home commute, including the percentagibef
population than they represent. We can observe that the -home
to-work correlation coefficients are higher when the mypatty
has a large number of citizerisg., larger cities tend to have more
predictable home-to-work commuting patterns than smailtess.
On the other hand, larger municipalities tend to be lessigiadale
in their work-to-home commutes (have smaller correlatialugs)
than smaller towns. This is probably due to the fact that igda
cities citizens tend to do other activities once they getafwtork
as opposed to smaller towns where people tend to go dirextly t
home. Thus, although on average home-to-work patternsaappe
be less predictable than the work-to-home ones (as showa-in T
bles 1 and 2), that is only the case for small municipalitiedarge
ones, the opposite holds, whereby the larger the city, the -
dictable the home to work mobility matrices are (when coragar
to the work to home mobility matrix).

These preliminary results seem to indicate that incorpugdhe
size of the municipalities in the optimization process damiprove
the final correlation values. Also, we consider that havingren
data to generate the O-D matrix will, to some extent, miggae
current limitations regarding the predictability of smmallinicipali-
ties (consider that because we only use Monday through @awrs
in the end we have 17 days of traffic for the optimization pssge

7. RELATED WORK

The construction of O-D matrices has been typically stuthgd
transportation and urban planning research. Traditioolitions
are based on questionnaires and/or in the combination of-que
tionnaires with traffic information. Due to the limitatioms the
data available, such solutions have typically focused oregdiza-
tion techniques that construct unbiased matrices fromgbalata.
The main approaches used to obtain traffic data informaticlndle
video processing [13] or electronic toll collection mecisams [11].

Individual Correlation values for H-W- and W-H for a set of representative municipalities.

Nevertheless, these approaches are limited because oheatfon
provided only reflects a partial view of the route and becahsg
only gather information from a unique means of transpartatiA
possible solution for these limitations is the use of GP&.ddb
this case, the information contains complete routes buamtheunt
of data available is even more limited [19]. In general, tke of
GPS data for estimating O-D matrices is not feasible, mailig
to privacy concerns, but also due to the limited scalabiityhe
results caused by the limited amount of data available. Tithes
done up to now focus mainly on GPS data available from taxi or
bus fleets[19] which highly limits the conclusions.

The use of Call Detail Records(CDR) to model behaviors eelat
to commuting patterns solves to a large extent the previoutat
tions. A variety of studies can be found in the literatures Work
by Caceres et al.[5] uses GSM simulated traces to constrigih-o
destination data to measure the flow of vehicles, Zhang ¢2@].
presents a model to transform cellular counts into vehiadants
in order to construct commuting matrices, and Sohn et al}. ifi:7
troduced cell phone probes in the network to identify trejaes
and estimates O-D matrices using handoffs.

Our approach has a set of differential factors with theseipus
studies: (1) we use CDR data that does not contain any handoff
information. Handoff information consists on storing tlegjgence
of towers used during a conversation and although they geovi
more information, cell phone operators do not keep such diz¢a
to privacy concerns (also consider that information woutially
be useful only if using cell-phones was allowed while dr@)in(2)
our approach is able to capture the cultural schedulesviedakith
commuting patterns for different urban environments ando(8
approach focusses on showing that the traditional quesdics:
based approaches for estimating O-D matrices can be apmated
by the technique we present. While the state of the art mainly
presents techniques to construct O-D matrices and asshatahé
quality of the data will imply good results, in our case thehtigique
we propose uses the information contained in questionbaised
O-D matrices to tune the parameters and validate the results

From this perspective, our work has elements in common with
the work by Calabrese et al. [6] in the sense that the vatidaif
the technique is done with external O-D matrices obtainedgus
traditional approaches. The difference in our case is thatlso
use that same information to identify the best parameterome



struct O-D matrices with CDR in order to approximate the galu
of traditional approaches. This allows us to present a figclen
that can be adapted to capture the different cultural sdbsdf
different urban areas.

Some authors identify the construction of O-D matrices gisin
CDR as the identification of home and work for each user, using
that information to aggregate origin-destination patieifhe work
by Frias-Martinezet al. [8], Isaacmanret al.[9] and Calabrese et
al. [6] present algorithms to detect home and work from cethd
records by identifying highly used cell-phone towers. N#vwe-
less the use of such algorithms has strong limitations fifedtahe
construction of O-D matrices, mainly: (1) the error introdd by
the algorithms in the estimation of the locations (which é@meral
is not measurable due to the lack of ground truth data); aipd (2
the fact that the coverage is limited by the availability mfiorma-
tion for each useri.e, home and work can only be detected for
individuals that have a minimum amount of interactions vtfitair
cellphone. Depending on the context, this requirement denr fi
more than 80% of individuals[8], with the correspondingsbia
the final matrix. Our approach does not focus on identifyingnb
and work as a base for constructing an O-D matrix, and as a re-
sult, we do not filter individuals that do commute but whodéraa
frequency does not allow for the identification of home andkwo

8. CONCLUSIONS

Traditional methods for the estimation of mobility matscguf-
fer from a variety of limitations, mainly the bias of the infioation
collected and the cost of gathering such information. Toawae

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

12
these issues, we have presented a method based on the data coH ]

lected by cell phone infrastructures to generate commutiagi-
ces. In the literature we can find similar approaches, butiircase

we have focussed our study on showing that we can replicate th
information contained in questionnaire-based O-D matdrice

Our approach is implemented with CMTAR, a TAR-based algo-
rithm designed to construct commuting matrices from CDRadat
The combination of CMTAR with optimization techniques pro-
vides an approach that identifies which parameters needusdzt
to construct commuting matrices from CDR that are as sinaitar
possible to the original NSI matrices. Our method computes-c
muting matrices without the need of collecting survey infation,
which as a result provides a cost efficient tool to generai® Da-
trices as frequently as needed. Our experimental evatuaiia
validation has showed that we can compute commuting matrice
with a high level of accuracy using CDR, and as a result our CDR
generated matrices can be used for the same purposes &etiadi
matrices.

Our future work will study the evolution of commuting patisr
over time. Additionally, we plan to improve the optimizatipro-
cess by incorporating weights as a means to compute moreséecu
home-to-work and work-to-home commuting matrices.
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